skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mehta, Ranjana K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. Automation misuse and acceptance, influenced by trust, environmental conditions, and confidence, have hindered drivers from fully benefiting from partially automated vehicles. This study investigates how driver trust changes with AV reliance, differences in mental and physiological states, and continuous measures’ effectiveness. The takeover drivers reported lower trust than the non-takeover drivers in all scenarios. Nontakeover drivers’ elevated DLPFC activation aligns with trust networks and emotion regulation. The groups also differed in neural activation preand during scenarios with the takeover group showed more PFC, V2V3, and IFC engagement pre-scenario. Gaze revealed the takeover group fixated more on the AV button or dashboard, indicating readiness to take over, while non-takeover drivers focused on the rearview mirror, reflecting situational awareness. HRV responses showed higher physiological arousal in the takeover group pre-scenario. In summary, our multimodal approach reveals takeover behavior is associated with lower trust, cognitive unloading, increased stress, and anticipatory visual attention. 
    more » « less
  3. Background Stress affects learning during training, and virtual reality (VR) based training systems that manipulate stress can improve retention and retrieval performance for firefighters. Brain imaging using functional Near Infrared Spectroscopy (fNIRS) can facilitate development of VR-based adaptive training systems that can continuously assess the trainee’s states of learning and cognition. Objective The aim of this study was to model the neural dynamics associated with learning and retrieval under stress in a VR-based emergency response training exercise. Methods Forty firefighters underwent an emergency shutdown training in VR and were randomly assigned to either a control or a stress group. The stress group experienced stressors including smoke, fire, and explosions during the familiarization and training phase. Both groups underwent a stress memory retrieval and no-stress memory retrieval condition. Participant’s performance scores, fNIRS-based neural activity, and functional connectivity between the prefrontal cortex (PFC) and motor regions were obtained for the training and retrieval phases. Results The performance scores indicate that the rate of learning was slower in the stress group compared to the control group, but both groups performed similarly during each retrieval condition. Compared to the control group, the stress group exhibited suppressed PFC activation. However, they showed stronger connectivity within the PFC regions during the training and between PFC and motor regions during the retrieval phases. Discussion While stress impaired performance during training, adoption of stress-adaptive neural strategies (i.e., stronger brain connectivity) were associated with comparable performance between the stress and the control groups during the retrieval phase. 
    more » « less
  4. null (Ed.)
    The nature of firefighters’ duties requires them to work for long periods under unfavorable conditions. To perform their jobs effectively, they are required to endure long hours of extensive, stressful training. Creating such training environments is very expensive and it is difficult to guarantee trainees’ safety. In this study, firefighters are trained in a virtual environment that includes virtual perturbations such as fires, alarms, and smoke. The objective of this paper is to use machine learning methods to discern encoding and retrieval states in firefighters during a visuospatial episodic memory task and explore which regions of the brain provide suitable signals to solve this classification problem. Our results show that the Random Forest algorithm could be used to distinguish between information encoding and retrieval using features extracted from fNIRS data. Our algorithm achieved an F-1 score of 0.844 and an accuracy of 79.10% if the training and testing data are obtained at similar environmental conditions. However, the algorithm’s performance dropped to an F-1 score of 0.723 and accuracy of 60.61% when evaluated on data collected under different environmental conditions than the training data. We also found that if the training and evaluation data were recorded under the same environmental conditions, the RPM, LDLPFC, RDLPFC were the most relevant brain regions under non-stressful, stressful, and a mix of stressful and non-stressful conditions, respectively. 
    more » « less
  5. null (Ed.)